Extensions 1→N→G→Q→1 with N=C2xC18 and Q=C32

Direct product G=NxQ with N=C2xC18 and Q=C32
dρLabelID
C3xC6xC18324C3xC6xC18324,151

Semidirect products G=N:Q with N=C2xC18 and Q=C32
extensionφ:Q→Aut NdρLabelID
(C2xC18):C32 = A4x3- 1+2φ: C32/C1C32 ⊆ Aut C2xC18369(C2xC18):C3^2324,131
(C2xC18):2C32 = A4xC3xC9φ: C32/C3C3 ⊆ Aut C2xC18108(C2xC18):2C3^2324,126
(C2xC18):3C32 = C3xC9:A4φ: C32/C3C3 ⊆ Aut C2xC18108(C2xC18):3C3^2324,127
(C2xC18):4C32 = C2xC6x3- 1+2φ: C32/C3C3 ⊆ Aut C2xC18108(C2xC18):4C3^2324,153

Non-split extensions G=N.Q with N=C2xC18 and Q=C32
extensionφ:Q→Aut NdρLabelID
(C2xC18).C32 = C62.9C32φ: C32/C1C32 ⊆ Aut C2xC18549(C2xC18).C3^2324,132
(C2xC18).2C32 = A4xC27φ: C32/C3C3 ⊆ Aut C2xC181083(C2xC18).2C3^2324,42
(C2xC18).3C32 = C27:A4φ: C32/C3C3 ⊆ Aut C2xC181083(C2xC18).3C3^2324,43
(C2xC18).4C32 = C3xC9.A4φ: C32/C3C3 ⊆ Aut C2xC18162(C2xC18).4C3^2324,44
(C2xC18).5C32 = C62.C9φ: C32/C3C3 ⊆ Aut C2xC18543(C2xC18).5C3^2324,45
(C2xC18).6C32 = C62.25C32φ: C32/C3C3 ⊆ Aut C2xC18543(C2xC18).6C3^2324,128
(C2xC18).7C32 = C22xC9oHe3φ: C32/C3C3 ⊆ Aut C2xC18108(C2xC18).7C3^2324,154
(C2xC18).8C32 = C22xC27:C3central extension (φ=1)108(C2xC18).8C3^2324,85

׿
x
:
Z
F
o
wr
Q
<